人工智能原理培训
Part I. Basics: Chapter 1. Introduction
1.1 Overview of Artificial Intelligence
1.2 Foundations of Artificial Intelligence
1.3 History of Artificial Intelligence
1.4 The State of The Art
1.5 Summary
Quizzes for Chapter 1
Part I. Basics: Chapter 2. Intelligent Agent
2.1 Approaches for Artificial Intelligence
2.2 Rational Agents
2.3 Task Environments
2.4 Intelligent Agent Structure
2.5 Category of Intelligent Agents
2.6 Summary
Quizzes for Chapter 2
Part II. Searching: Chapter 3. Solving Problems by Search
3.1 Problem Solving Agents
3.2 Example Problems
3.3 Searching for Solutions
3.4 Uninformed Search Strategies
3.5 Informed Search Strategies
3.6 Heuristic Functions
3.7 Summary
Quizzes for Chapter 3
Part II. Searching: Chapter 4. Local Search and Swarm Intelligence
4.1 Overview
4.2 Local Search Algorithms
4.3 Optimization and Evolutionary Algorithms
4.4 Swarm Intelligence and Optimization
4.5 Summary
Quizzes for Chapter 4
Part II. Searching: Chapter 5. Adversarial Search
5.1 Games
5.2 Optimal Decisions in Games
5.3 Alpha-Beta Pruning
5.4 Imperfect Real-time Decisions
5.5 Stochastic Games
5.6 Monte-Carlo Methods
5.7 Summary
Quizzes for Chapter 5
Part II. Searching: Chapter 6. Constraint Satisfaction Problem
6.1 Constraint Satisfaction Problems (CSPs)
6.2 Constraint Propagation: Inference in CSPs
6.3 Backtracking Search for CSPs
6.4 Local Search for CSPs
6.5 The Structure of Problems
6.6 Summary
Quizzes for Chapter 6
Part III. Reasoning: Chapter 7. Reasoning by Knowledge
7.1 Overview
7.2 Knowledge Representation
7.3 Representation using Logic
7.4 Ontological Engineering
7.5 Bayesian Networks
7.6 Summary
Quizzes for Chapter 7
Part IV. Planning: Chapter 8. Classic and Real-world Planning
8.1 Planning Problems
8.2 Classic Planning
8.3 Planning and Scheduling
8.4 Real-World Planning
8.5 Decision-theoretic Planning
8.6 Summary
Quizzes for Chapter 8
Part V. Learning: Chapter 9. Perspectives about Machine Leaning
9.1 What is Machine Learning
9.2 History of Machine Learning
9.3 Why Different Perspectives
9.4 Three Perspectives on Machine Learning
9.5 Applications and Terminologies
9.6 Summary
Quizzes for Chapter 9
Part V. Learning: Chapter 10. Tasks in Machine Learning
10.1 Classification
10.2 Regression
10.3 Clustering
10.4 Ranking
10.5 Dimensionality Reduction
10.6 Summary
Quizzes for Chapter 10
Part V. Learning: Chapter 11. Paradigms in Machine Learning
11.1 Supervised Learning Paradigm
11.2 Unsupervised Learning Paradigm
11.3 Reinforcement Learning Paradigm
11.4 Other Learning Paradigms
11.5 Summary
Quizzes for Chapter 11
Part V. Learning: Chapter 12. Models in Machine Learning
12.1 Probabilistic Models
12.2 Geometric Models
12.3 Logical Models
12.4 Networked Models
12.5 Summary
Quizzes for Chapter 12