大数据分析挖掘-基于Hadoop/Mahout/MLlib培训
第一讲大数据挖掘及其背景
1)数据挖掘定义
2)Hadoop相关技术
3)大数据挖掘知识点
第二讲 MapReduce/DAG计算模式
1)分布式文件系统DFS
2)MapReduce计算模型介绍
3)使用MR进行算法设计
4)DAG及其算法设计
第三讲 云挖掘工具Mahout/MLib
1)Hadoop中的Mahoutb介绍
2)Spark中的Mahout/MLib介绍
3)系统及其Mahout实现方法
4)信息聚类及其MLlib实现方法
5)分类技术在Mahout/MLib中的实现方法
第四讲 系统及其应用开发
1)一个系统的模型
2)基于内容的
3)协同过滤
4)基于Mahout的电影案例
第五讲 分类技术及其应用
1)分类的定义
2)分类主要算法
3)Mahout分类过程
4)评估指标以及评测
5)贝叶斯算法新闻分类实例
第六讲 聚类技术及其应用
1)聚类的定义
2)聚类的主要算法
3)K-Means、Canopy及其应用示例
4)Fuzzy K-Means、Dirichlet及其应用示例
5)基于MLlib的新闻聚类实例
第七讲 关联规则和相似项发现
1)购物篮模型
2)Apriori算法
3)抄袭文档发现
4)近邻搜索的应用
第八讲 流数据挖掘相关技术
1)流数据挖掘及分析
2)Storm和流数据处理模型
3)流处理中的数据抽样
4)流过滤和Bloom filter
第九讲 云环境下大数据挖掘应用
1)与Hadoop/Yarn集群应用的协作
2)与Docker等其它云工具配合
3)大数据挖掘行业应用展望